You can also find this code on nbviewer. Lesson 09 #!/usr/bin/env python # coding: utf-8 # Lesson 9 # > Export data from a microdost sql database to cvs, excel, and txt. # Import libraries import pandas as pd import sys from sqlalchemy import create_engine, MetaData, Table, select print('Python version ' + sys.version) print('Pandas version ' + pd.__version__) # Grab Data from SQL # In this section we use the ***sqlalchemy*** library to grab data from a sql database. Note that the parameter section will need to be modified. # Parameters TableName = "data" DB = { 'drivername': 'mssql+pyodbc', 'servername': 'DAVID-THINK', #'port': '5432', #'username': 'lynn', #'password': '', 'database': 'BizIntel', 'driver': 'SQL Server Native Client 11.0', 'trusted_connection': 'yes', 'legacy_schema_aliasing': False } # Create the connection engine = create_engine(DB['drivername'] + '://' + DB['servername'] + '/' + DB['database'] + '?' + 'driver=' + DB['driver'] + ';' + 'trusted_connection=' + DB['trusted_connection'], legacy_schema_aliasing=DB['legacy_schema_aliasing']) conn = engine.connect() # Required for querying tables metadata = MetaData(conn) # Table to query tbl = Table(TableName, metadata, autoload=True, schema="dbo") #tbl.create(checkfirst=True) # Select all sql = tbl.select() # run sql code result = conn.execute(sql) # Insert to a dataframe df = pd.DataFrame(data=list(result), columns=result.keys()) # Close connection conn.close() print('Done') # All the files below will be saved to the same folder the notebook resides in. # Export to CSV df.to_csv('DimDate.csv', index=False) print('Done') # Export to EXCEL df.to_excel('DimDate.xls', index=False) print('Done') # Export to TXT df.to_csv('DimDate.txt', index=False) print('Done')